Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Impact of Local Work Function Variations on Fermi Level Pinning of Organic Semiconductors

Identifieur interne : 000366 ( Main/Repository ); précédent : 000365; suivant : 000367

The Impact of Local Work Function Variations on Fermi Level Pinning of Organic Semiconductors

Auteurs : RBID : Pascal:14-0009431

Descripteurs français

English descriptors

Abstract

This photoemission study shows that the work function (ϕ) of indium-tin-oxide (ITO) can be increased from 4.2 up to 6.5 eV upon the deposition of the molecular electron acceptors tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and hexaazatriphenylene-hexacarbonitrile (HATCN). The evolution of sample ϕ and the hole injection barrier upon subsequent deposition of the hole transport material N,N'-bis(1-naphthyl)-NN'-diphenyl-1,1'-biphenyl-4,4'-diamine (α-NPD) was studied for different acceptor precoverages of ITO, corresponding to different initial ϕ values. When ϕ of the acceptor covered substrate exceeds a critical value ϕcrit, the highest occupied molecular level of multilayer α-NPD is found to be pinned 0.5 eV below the Fermi level (EF). Noteworthy, ϕcrit is found at 5.2 eV, which is 0.4 eV higher than expected for α-NPD (4.8 eV), and vacuum level alignment does not apply even before EF-pinning sets in. An electrostatic model that accounts for nonuniformity of the substrate at acceptor submonolayer coverages and the associated local work function changes explains the origin of "delayed" EF-pinning.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0009431

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The Impact of Local Work Function Variations on Fermi Level Pinning of Organic Semiconductors</title>
<author>
<name sortKey="Winkler, Stefanie" uniqKey="Winkler S">Stefanie Winkler</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Humboldt-Universität zu Berlin, Institut für Physik</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Frisch, Johannes" uniqKey="Frisch J">Johannes Frisch</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Humboldt-Universität zu Berlin, Institut für Physik</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schlesinger, Raphael" uniqKey="Schlesinger R">Raphael Schlesinger</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Humboldt-Universität zu Berlin, Institut für Physik</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oehzelt, Martin" uniqKey="Oehzelt M">Martin Oehzelt</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Humboldt-Universität zu Berlin, Institut für Physik</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rieger, Ralph" uniqKey="Rieger R">Ralph Rieger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Max Planck Institute für Polymerforschung, Ackermannweg 10</s1>
<s2>55128 Mainz</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>55128 Mainz</wicri:noRegion>
<wicri:noRegion>Ackermannweg 10</wicri:noRegion>
<wicri:noRegion>55128 Mainz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="R Der, Joachim" uniqKey="R Der J">Joachim R Der</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Max Planck Institute für Polymerforschung, Ackermannweg 10</s1>
<s2>55128 Mainz</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>55128 Mainz</wicri:noRegion>
<wicri:noRegion>Ackermannweg 10</wicri:noRegion>
<wicri:noRegion>55128 Mainz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rabe, J Rgen P" uniqKey="Rabe J">J Rgen P. Rabe</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Humboldt-Universität zu Berlin, Institut für Physik</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="M Llen, Klaus" uniqKey="M Llen K">Klaus M Llen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Max Planck Institute für Polymerforschung, Ackermannweg 10</s1>
<s2>55128 Mainz</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>55128 Mainz</wicri:noRegion>
<wicri:noRegion>Ackermannweg 10</wicri:noRegion>
<wicri:noRegion>55128 Mainz</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Koch, Norbert" uniqKey="Koch N">Norbert Koch</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Humboldt-Universität zu Berlin, Institut für Physik</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0009431</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0009431 INIST</idno>
<idno type="RBID">Pascal:14-0009431</idno>
<idno type="wicri:Area/Main/Corpus">000355</idno>
<idno type="wicri:Area/Main/Repository">000366</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Critical value</term>
<term>Diamine</term>
<term>Electronic structure</term>
<term>Electrostatics</term>
<term>Experimental design</term>
<term>Fermi level</term>
<term>Indium oxide</term>
<term>Multilayer</term>
<term>Multilayers</term>
<term>Organic semiconductors</term>
<term>Photoemission</term>
<term>Pinning</term>
<term>Tin oxide</term>
<term>Work functions</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Travail sortie</term>
<term>Niveau Fermi</term>
<term>Structure électronique</term>
<term>Ancrage</term>
<term>Semiconducteur organique</term>
<term>Photoémission</term>
<term>Oxyde d'indium</term>
<term>Oxyde d'étain</term>
<term>Diamine</term>
<term>Valeur critique</term>
<term>Couche multimoléculaire</term>
<term>Plan expérience</term>
<term>Electrostatique</term>
<term>Multicouche</term>
<term>7330</term>
<term>7322</term>
<term>7960J</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">This photoemission study shows that the work function (ϕ) of indium-tin-oxide (ITO) can be increased from 4.2 up to 6.5 eV upon the deposition of the molecular electron acceptors tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and hexaazatriphenylene-hexacarbonitrile (HATCN). The evolution of sample ϕ and the hole injection barrier upon subsequent deposition of the hole transport material N,N'-bis(1-naphthyl)-NN'-diphenyl-1,1'-biphenyl-4,4'-diamine (α-NPD) was studied for different acceptor precoverages of ITO, corresponding to different initial ϕ values. When ϕ of the acceptor covered substrate exceeds a critical value ϕ
<sub>crit</sub>
, the highest occupied molecular level of multilayer α-NPD is found to be pinned 0.5 eV below the Fermi level (E
<sub>F</sub>
). Noteworthy, ϕ
<sub>crit </sub>
is found at 5.2 eV, which is 0.4 eV higher than expected for α-NPD (4.8 eV), and vacuum level alignment does not apply even before E
<sub>F</sub>
-pinning sets in. An electrostatic model that accounts for nonuniformity of the substrate at acceptor submonolayer coverages and the associated local work function changes explains the origin of "delayed" E
<sub>F</sub>
-pinning.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>43</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The Impact of Local Work Function Variations on Fermi Level Pinning of Organic Semiconductors</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WINKLER (Stefanie)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>FRISCH (Johannes)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHLESINGER (Raphael)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>OEHZELT (Martin)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RIEGER (Ralph)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>RÄDER (Joachim)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>RABE (Jürgen P.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MÜLLEN (Klaus)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>KOCH (Norbert)</s1>
</fA11>
<fA14 i1="01">
<s1>Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Strasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Humboldt-Universität zu Berlin, Institut für Physik</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Max Planck Institute für Polymerforschung, Ackermannweg 10</s1>
<s2>55128 Mainz</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>22285-22289</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000504246890140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0009431</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>This photoemission study shows that the work function (ϕ) of indium-tin-oxide (ITO) can be increased from 4.2 up to 6.5 eV upon the deposition of the molecular electron acceptors tetrafluoro-tetracyanoquinodimethane (F4TCNQ) and hexaazatriphenylene-hexacarbonitrile (HATCN). The evolution of sample ϕ and the hole injection barrier upon subsequent deposition of the hole transport material N,N'-bis(1-naphthyl)-NN'-diphenyl-1,1'-biphenyl-4,4'-diamine (α-NPD) was studied for different acceptor precoverages of ITO, corresponding to different initial ϕ values. When ϕ of the acceptor covered substrate exceeds a critical value ϕ
<sub>crit</sub>
, the highest occupied molecular level of multilayer α-NPD is found to be pinned 0.5 eV below the Fermi level (E
<sub>F</sub>
). Noteworthy, ϕ
<sub>crit </sub>
is found at 5.2 eV, which is 0.4 eV higher than expected for α-NPD (4.8 eV), and vacuum level alignment does not apply even before E
<sub>F</sub>
-pinning sets in. An electrostatic model that accounts for nonuniformity of the substrate at acceptor submonolayer coverages and the associated local work function changes explains the origin of "delayed" E
<sub>F</sub>
-pinning.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C30</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C22</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70I60J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Travail sortie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Work functions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Niveau Fermi</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Fermi level</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Structure électronique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Electronic structure</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Ancrage</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Pinning</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur organique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Organic semiconductors</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Photoémission</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Photoemission</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Diamine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Diamine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Diamina</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Valeur critique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Critical value</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Valor crítico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Couche multimoléculaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Multilayer</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Capa multimolecular</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Plan expérience</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Experimental design</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Electrostatique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Electrostatics</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Multicouche</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Multilayers</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>7330</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>7322</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>7960J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>006</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000366 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000366 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0009431
   |texte=   The Impact of Local Work Function Variations on Fermi Level Pinning of Organic Semiconductors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024